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In this paper we consider the motion planning prob-
lem to find a path for a rod (also known as a line seg-
ment or ladder) amidst polyhedral obstacles in 3D. The
configuration space of a rod has 5 degrees of freedom
(DOFs) and may be identified with R

3 × S2. Devising
theoretically-sound but practical algorithms for motion
planning of robots with more than 4 DOFs is a major
challenge. To our knowledge, there is no explicit exact
planning algorithm for a rod. Even if one exists, exact
implementation seems out of the question. We also be-
lieve that exact algorithms have little practical value in
robot motion planning because of the inherent inaccu-
racies in all real-world robots and environments. So we
want ε-approximations, but we must be careful not to
use the ε parameter as if it is an exact parameter (e.g.,
replacing a point p by an ε-ball centered at p with sharp
boundaries). In our recent work [3, 5, 6, 1], we pro-
pose the notion of a resolution-exact algorithm where ε
is used in a “soft” manner. Specifically, we propose a
subdivision framework based on the twin foundations of
ε-exactness and soft predicates. In this paper we develop
an ε-exact planner for a rod in 3D under this framework.

Technical Background and Setting
We consider a robot R0 which is a rod (closed line seg-
ment) of length ℓ0 > 0 in R

3. The two endpoints of the
rod are denoted B and A, and called (respectively) the
base and apex of R0. The standard placement of the
rod is defined to be the line segment [(0, 0, 0), (0, 0, ℓ0)]
where (0, 0, 0) and (0, 0, ℓ0) correspond to the placements
of B and A, respectively.

As a rigid body, the rod has 5 DOFs. We let its con-
figuration space be Cspace = R

3 ×S2 and a typical con-
figuration is a pair (q, α) where q = (x, y, z) ∈ R

3 and
α ∈ S2 is a (rod) orientation. This configuration de-
fines a transformation of R

3 whereby the base and apex
of the robot are respectively transformed to the points
B[q, α] := q and A[q, α] := q + ℓ0α.

The space S2 is unsuitable for subdivision. So we in-

troduce a parametrized model Ŝ2 which is the bound-
ary of the cube [−1, 1]3 ⊆ R

3. In general, if X and
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Y are metric spaces, we call Y a good parametriza-
tion of X if there is a constant K > 1 and home-
omorphism h : Y → X such that for all x, y ∈ Y ,

‖x−y‖
‖h(x)−h(y)‖ ∈ [1/K, K]. Here, ‖.‖ denotes the metric

in the respective space. It is easy to see that Ŝ2 is a
good parametrization of S2, called the square model
(as given in [6] in a more general framework) of the 2-

sphere S2. There is a canonical map ·̂ : Ŝ2 → S2 where
α̂ 7→ α = bα

‖bα‖ . For v ∈ {x, y, z}, we call +v or −v a

direction. So there are 6 directions and they identify

the faces of Ŝ2 as follows: Ŝ2
+v (resp., Ŝ2

−v) denotes

the face of Ŝ2 in which v = 1 (resp., v = −1). For in-

stance, Ŝ2
+x = {(1, y, z) : −1 ≤ y, z ≤ 1} and Ŝ2

−z =
{(x, y,−1) : −1 ≤ x, y ≤ 1}.

Fix some set Ω ⊆ R
3 of obstacles. The footprint of

the rod AB at configuration γ = (q, α) ∈ Cspace is the
closed line segment with the base at B[q, α] and apex
at A[q, α]. Let AB[γ] denote this footprint. The sep-
aration between two sets S, T ⊆ R

3 is Sep(S, T ) =
inf {‖s − t‖ : s ∈ S, t ∈ T }. When S is fixed, we also
write SepS : R

3 → R≥0 where SepS(q) = Sep(S, {q}).
The Ω-clearance function CℓΩ : Cspace → R≥0 is given
by CℓΩ(γ) := Sep(AB[γ], Ω). We omit the subscript Ω
when it is understood. We say γ is free if Cℓ(γ) > 0.

For any non-zero point q = (x, y, z) ∈ R
3, let q̂ denote

the point
q̂ := (x/d, y/d, z/d)

where d = max {|x|, |y|, |z|}. Note that q̂ ∈ Ŝ2. For

instance, if q = (−2, 1, 0) then q̂ = (−1, 0.5, 0) ∈ Ŝ2
−x.

We say a planner is resolution-exact if there is an
“accuracy” constant K > 1 such that for all input in-
stances and any input “resolution” parameter ε > 0,
if there is a path with clearance Kε, the planner must
output a path1, and if there is no path of clearance
ε/K, the planner must output NO-PATH. Note that
if the maximum clearance of the input instance is in
the range [ε/K, Kε), the planner may either return a
path or say NO-PATH. The use of ε-exact algorithms
has some major consequence: fundamentally, this avoids
exact computation (i.e., the Zero Problem). First, it
means we can use numerical approximations to solve our

1 Note that we do not require that the output path has any
particular clearance. A variation is to require that the output path
has clearance ε/K (i.e., if there is a path with clearance Kε, the
planner must output a path with clearance ε/K). This variation
is used in [3].



problem. In particular, non-algebraic problems are now
accessible by such algorithms. Second, we can avoid
all degeneracy determinations in our algorithms. Note
that except for relatively simple (linear) problems, most
problems in 3D computational geometry have formidable
non-degeneracies for which we currently have no analysis
[4]. Thus, exact (and explicit) algorithms are unavailable
for such a basic problem as Voronoi diagram of a set of
polyhedral objects.

Figure 1: This example environment contains four blocks of

“walls”, each with a horizontal passage (the first and third walls

from left) or a vertical passage (the second and fourth walls). The

initial (red) and final (blue) configurations of the rod (with length

150) are at the right and left sides of the walls. The resulting path

is shown in cyan, with the trace (i.e., the orientations of the rod

at various places) along the path shown in magenta.

Figure 2: Partial subdivision result of the example environment

in Fig. 1. The green boxes mean that they are in the free configu-

ration space for the rod. Again, the initial and final configurations

of the rod are respectively shown in red and blue, and the path is

shown in cyan.

Summary of Contributions
In this paper we develop an ε-exact planner for a rod in

3D under the general framework of subdivision motion
planning [3, 5, 6, 1]. We make three major contributions:

(A) Soft predicates for a rod robot in 3D. As en-
visioned in [3, 1], soft predicates can exploit a wide
variety of techniques that trade-off ease of implementa-
tion against efficiency. Here we introduce the notions of
the forbidden orientations of a corner feature, of
an edge feature, and to a wall feature, respectively,
in the context of a 3D rod robot.

(B) A subdivision scheme for R
3×S2. Naive subdivision

of this space is impractical; we devise a splitting strategy
to achieve real-time performance, by extending the “T/R
Splitting” technique of [1] for planar 2-link robots (with
configuration space R

2 × (S1)2, 4 DOFs) to R
3 × S2.

(C) Implementation of the above techniques. Our ex-
periments on a variety of challenging obstacle environ-
ments confirm the practicality of our planner. Unlike
most practical planners today, we do not use randomiza-
tion and yet offer much stronger theoretical guarantees
of performance.

We have implemented in C++ our motion planner for
a rod robot in 3D. Our code and datasets will be freely
distributed with the Core Library. An example is
shown in Figs. 1 and 2, for which our planner can find
solution paths efficiently in real time. A video clip show-
ing the animation of a resulting path in more detail is
available2.
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2 https://youtu.be/PnlErBRun_s.
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